Ф

Пластик из микро- и нановолокон СВМПЭ и связующих смол

В настоящее время получение пластика из лёгких, высокопрочных, износостойких волокон СВМПЭ является первостепенной задачей. А применение волокон СВМПЭ в баллистической защите делает эту задачу стратегической. Попытки изготовить суперпрочный, суперлёгкий пластик из волокон СВМПЭ на основе различных смол предпринимаются постоянно.

Из-за недостаточной адгезии волокна к связующему применяются различные методы — обработка волокна плазмой, коронным разрядом на воздухе или в среде, обработка УФО, травление. Применяют и гибридные волокна при получении армирующих тканей — сочетание волокон СВМПЭ с арамидным, углеродным или стекловолокном, чтобы нивелировать плохую адгезию к СВМПЭ. Предпринимаются попытки и модифицировать связующие смолы введением наноразмерных частиц различных материалов. Нельзя сказать, что эффект от этих модификаций не оправдывает надежд, но всё же ожидания были значительно выше.

Когда речь идёт о баллистическом волокне Dyneema, то изначально эти волокна представляют собой высокопрочные полифиламентные нити с условным диаметром от 100 до 500 мкм (в зависимости от числа мононитей) с прочностью 3.5–5.0 ГПа. Нановолокна из СВМПЭ, полученные электроспиннингом раствора, имеют прочность 7.0–8.0 ГПа, а теоретическая прочность волокон из СВМПЭ составляет, по данным различных источников, 15–20 ГПа. Помимо повышения адгезии, применение микро- и нановолокон СВМПЭ — это один из путей повышения прочности и жёсткости пластика.

Получение нановолокон методом электроспиннинга для таких полимеров, как СВМПЭ, малоэффективно из-за высокой вязкости расплава, а из раствора — очень дорого и с ограниченной производительностью. На нашем предприятии разработана технология, претендующая на промышленную, производства микро- и нановолокон СВМПЭ путём дефибриллизации полифиламентных высокопрочных волокон, полученных по традиционной гель-технологии.

Дефибрилляция — это процесс разделения волокна на более тонкие, часто микронные или даже наноразмерные волокна. В настоящее время применяют специальные методы дефибриллизации с помощью ультразвука и растворителей. Мы применили ультразвуковой способ дефибриллизации высокопрочных, высокомодульных волокон СВМПЭ в твёрдой фазе и их прочёса и добились получения микро- и нановолокон.

Нановолокна полимеров — это волокна диаметром менее 100 нм, характеризующиеся высокой плотностью поверхности, гидрофильностью, гибкостью и удивительной прочностью: чем тоньше волокно, тем выше прочность. Появление на рынке в промышленном объёме самых лёгких высокопрочных, высокомодульных микро- и нановолокон из СВМПЭ, имеющих совершенно другие, неожиданные свойства по сравнению с исходными, имеет существенное значение для получения пластиков.

Прежде всего, такие волокна не требуют дополнительной обработки активации поверхности из-за их неожиданной гидрофильности. Во-вторых, эти волокна легко поддаются прессованию (например, в пластины) и термоскреплению. Достаточно высокая гидрофильность и микропористость этих пластин — практически идеальный армирующий материал для пропитки различными смолами. Варьирование давлением прессования препрегов позволяет изменять физико-механические свойства в широких пределах и получать материалы с заданными свойствами, что очень важно для создания эффективных высокопрочных сверхлёгких материалов. Мы применили вакуумный способ пропитки эпоксидной смолой.

Сравнение механических свойств высокопрочных волокон и КМ на их основе

Материал волокна Прочность, МПа Модуль упругости, МПа
Dyneema (волокно) 2500–3600
(по литер. данным)
70–110
(по литер. данным)
КМ на основе матов из волокон Dyneema + эпоксид. смола 400–600 20–40
Нановолокно из СВМПЭ 4000–7000
(по литер. данным)
100–150
(по литер. данным)
КМ на основе микро- и нановолокна (дефибриллированные волокна Dyneema + эпоксид. смола) 800–1000 25–50

Фото: 1 — микро- и нановолокна из СВМПЭ после выхода из установки;
2 — смоченные водой (гидрофильность);
3 — прессованные пластины из микро- и нановолокон для пропитки;
4 — готовый пластик.

micro_1.jpg micro_2.jpg
micro_3.jpg micro_4.jpg

Области применения

Химическая промышленность
Уплотнения, прокладки, вкладыши
Пищевая промышленность
Безопасные уплотнительные элементы
Медицина
Медицинское оборудование
Электроника
Электроизоляционные детали
Машиностроение
Подшипники, манжеты, матрицы
Автомобилестроение
Уплотнительные элементы

Преимущества материала

Химическая стойкость

Устойчивость к агрессивным средам, кислотам и щелочам

Пищевая безопасность

Пригоден для использования в пищевой и медицинской промышленности

Электроизоляция

Отличные диэлектрические свойства

Антифрикционные свойства

Низкий коэффициент трения, износостойкость

Широкий температурный диапазон

Работа в диапазоне от -269°C до +260°C

Долговечность

Гарантийный срок хранения — 20 лет

Как заказать

Простой процесс — без лишней бюрократии.

1
Опишите задачу
Размеры, материал, количество, условия эксплуатации.
2
Приложите чертёж (если есть)
PDF/PNG/DWG — удобно как вам.
3
Получите КП и сроки
Отвечаем быстро, предлагаем варианты.
4
Изготовление и доставка
Контроль качества, упаковка, отправка.

Как нас найти

Наш офис и производство в Санкт-Петербурге

Адрес:
г. Санкт-Петербург, ул. Коммуны, д.67
Телефон: +7 (812) 565‑48‑52
Бесплатно по РФ: 8‑800‑333‑64‑15
Позвонить
КП